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Traffic Burstiness Hurts User Experience

Internet traffic is bursty, causing:
1. queue buildup

Hurting user experience of latency-sensitive apps

VR

2. packet loss
POV

latency jitter

Online Gaming

To mitigate the impact of bursts,
 Over-provision: ISPs upgrade bandwidth

when link utilization > 50%l1l

» coarse-grained

» not cost-effective

100%

reserved bandwidth

upgrade threshold = 50%

0%

[1] Cisco. Best Practices in Core Network, Capacity Planning
White Paper. 2020.
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host

Mechanisms in end-hosts
- Application layer: @¥auic
* Transport layer: Go-gle BBr ,DCTCP
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Traditional Approaches to Mitigating Traffic Bursts
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1. Global perspective

2. ISP-friendly

~a—

—
router

Ve

Device-local traffic managers in network

« E.g. Dynamic load balance of Cisco
 Distribute traffic among multiple paths

Stuck at local

. global
optimum

optimum

optimum




Traffic engineering (TE) for burst mitigation?

« Traffic Engineering (TE) has potential Seattle New York
» Global perspective E‘ E‘

> ISP friendly TE system

« But TE is ignored previously

» Because of its slow decision-making speed |
Los Angeles —  Miami

» Compared to the duration of bursts, the control

loop of TE operates on a larger time-scale




The Control Loop of Typical TE

1. Data collection

a. network topology
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The Control Loop of Typical TE

4 )

a. network topology

A\MERICA Dublin

seconds/minutes—long/

Seoul

Barcelona /

Los Angeles
/
Hong Kong Miami ' /

b. global traffic demand matrix mz Controller

\ == Centralized

Seattle Miami
Seattle 2.0 TB] seconds-long
Miami 1.5TB Rule table in data plane
dst. node |index|path identifier
\ / edge router ; pat: 1
1 pat
3 path 2

edge router
2

/traffic split on predefined paths
/' (objective: minimizing the max. link util.)

Seattle
\ New York
Los Angeles —~ Miami

secondsm 3. Decision deployment
RIH AMERITA Dublin

Seoul

Barcelona

Hong Kong Miami



Control Loop Latency of TE Matters: Experiment Setting

) Meth-od: _ cg)r];\f:;rﬁalgizn _
> Ll_near-l.Drogr.ammlng-based TE Data_l . Deploying _th_e same
> Simulating different Control Loop Latency collection LP decisions
+ Traffic traces: "
» 2k 15-minute packet trace segments from =3 4\
WIDE backbone network Shl N
» The packet traces have 50ms-level bursts § i N\
. Topologies: j_'g‘j B \\ I'/
» A WAN topo. from a major ISP (291 routers) %’ e > \\\ /
» KDL (791 routers) from Internet Zoo -~ Different control loop latency




Control Loop Latency of TE Matters: Experimental Results

Method:

Traffic traces:

Topologies: .
polog 1§

—e— WIDE packet trace replay on AMIW _.

» Linear-Programming-based TE
WIDE packet trace replay on KD

» Simulating different Control Loop Latency

-
o

e
B

» 2k 15-minute packet trace segments from
WIDE backbone network
» The packet traces have 50ms-level bursts

Normalized MLU

BT

» A WAN topo. from a major ISP (291 routers) "~ 50ms10’ 10° 255

Control loop latency (millisecond)
» KDL (791 routers) from Internet Zoo

2 )

If we reduce control loop latency, we can reduce up to 4 /.8%0 of MLU

» The queuing length is reduced by 77.2% « The number of events where MLU exceeds the capacity
* The queuing delay is reduced by 75.9% upgrade threshold (50%) is reduced by 38.3%

- v,




Shorter Control Loop Latency Brings Better Performance

3 8- ourst | |
3 urs For the same burst, how different control loop
P latency can take effect on max. link utilization (MLU)?
T 9
— Lo
O
= @ Control loop latency = 1/2 burst duration
= | R % Control loop latency = 1/5 burst duration
S
S
s 3 \
g \
= The control loop latency must be close
2 - to the time scale of traffic bursts, or
s ° \ even smaller, in order to effectively
§ \alleviate burst-induced congestion!!!

Time(ms)

[ Question: How to reduce the control loop latency to the burst time-scale? ]




Current TE Systems Still Have High Control Loop Latency

. ‘%YEW‘“{ZEQr’{:’F [n7% v | ""VL‘L“‘ Contrech f’_‘f‘:"JN!ocatoﬂowon o
- Centralized LP-based TE ‘W %ﬁa"%ﬁ%i S’ ok rame Corcted 0,
’ ’ .  EEEEEE e N
» POP[SOSP’21] and NCFlow[NSDI'21] s L (e Haur 1 o' okt
-,.__,,:Dk 7'_._ variables M -
» Accelerate the LP computation by sub-problem et o, = ’*J cu,:.,—&
decomposition and parallelly solving R e | |
. Traffic demands — 'T\ﬁe—Touo!og.y, usage history ‘ //// A '
« Centralized ML-based TE Bri,liﬁm)—ftif @ | 2 309 5
T ey A E )
» DOTE[NSDI'23],TEAL[SIGCOMM’23] Can officad rtedimitingto__1—_{ "**"" ¢ W D F
g S nn 4 P s 3 raffic | [FOWGNN Mult-agent ADMM | | traffc
» Use deep learning to speed up the computation Service hosts TOwWAN (demends) | (§37) RL{SY) (§34) ) faocabons

(h) DOTE wah differences shown in red

[Only focus on accelerating the computation, still spend long time in data collection and decision deployment ]

 Distributed TE

> TeXCP[SIGCOMM’ 05], Halo[TON’ 14], MATE[INFOCOM’ 01] Sem' — T '

New York
» Local input collection and local decision deployment

Los Angeles

» Progressively refine based on local feedback

[ Slow multi-step convergence: at least seconds ]




Our ldea

Goals:

Reducing the control loop latency to the burst-scale
while maintaining performance comparable
to that of centralized TE systems

Answer: RedTE
@ Distributed TE, decision-making based on local

Info., and local decision deployment

@ Multi-agent Reinforcement Learning (MARL),

a router can learn from past experience, attempting
to make the global-informed decisions with locally
Information (avoid a slow multi-step convergence)

-

Solution quality Better

“’

gliobal LP

1EALL

Decision making speed Faster

locally measured

traffic statistics
deC|S|on the past
context O deC|S|ons

Learn from past experience
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RedTE Architecture

RedTE controller

simulation env.| °ffline RL agents
training .
historical dataT trained models

FEX

}’

ZR

Segment
Routing

% RedTE router %

2X regular router



RedTE Workflow

RedTE controller

simulation env.| Offline RLagents | __-------ol

training . -7 T~
% I 1. local data collection AN
4
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/ T T
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. . . \ u in
historical data trained models N AR -
\\ local link bandwidth
e
>z %& 4 2l M U .-
// T~ - -
/7 - s Tt e, e =——
/ S e o
% // ' - - .- 7=~ S
% 2.Iinference _-° . I
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Segment IR rule table in dataplane
Routing <l dst. node |index| path identifier
T~ 1 path 1
> %% " 2 path 1
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% RedTE router % R, -
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RedTE Workflow

Challenges

« Ensuring Collaboration Among All Agents Towards Global Optimum
« Ensuring Fast Convergence of Agent Training

* Reducing Decision Deployment Time

So edge router2| ..

% RedTE router

2% regular router . T



Challenge #1: Ensuring Collaboration Among All Agents Towards
Global Optimum

« We model distributed TE system as a cooperative multi-agent system (CMAYS)

But, since each router only has local information, how can they cooperate towards the global
optimum instead of each making greedy decisions

N
\

16



Design #1: Enabling Cooperation by Introducing MADDPG

agont 1

« Borrowing the idea from Cooperative Game Field,
and applying the MADDPG (Multi-agent deep
deterministic policy gradient)?lto train RL models

MADDPG aggregates the policies of
all agents into a global critic model,

Global critic and figures out each agent’s
Q value - Bovalue | contribution to the global reward.

action

— other state

info. _
stateT laCtion action
Through separate and precise

feedback, agents learn to cooperate!

network env.

[2] Ryan Lowe, Jean Harb, Aviv Tamar, Pieter Abbeel, and Igor Mordatch. 2018. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In 31st Conference on

Neural Information Processing Systems (NIPS). 17



Challenge #2: Ensuring Fast Convergence of Agent Training

« Traffic-driven environment: state transition process is also affected by the arrival process of network
traffic

* Problem: Randomness of network traffic - good action may receive a small reward due to a new
TM sequence with a high load arrived, training takes a long time to converge

reward r;
[ :‘-"‘-n,
\ | o/ Random!
V- ’U?A
=y
take action a, —
agent =
=
5
O
S
= >

‘ observe state s; Time (ms)
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Design #2: Training with Circular Traffic Matrix (TM) Replay

Short-term memory of the RL model —> Learning the TM evolution patterns

an integrated TM sequence o replaved the T-th time
only replayed the 1-th time replayed the 2-th time play !

Traditional replay (( (( ((

|
training epochs

> It takes along time (~1 day) for the model to converge!

« Fix a TM subsequence and replay it multiple times repeatedly, till convergence

« Then switches to the next TM subsequence and conduct the same procedure again and again

1-th TM subsequence 2-th TM subsequence S-th TM subsequence
replayed K times repeatedly | [replayed K times repeatedly |  teplayed K times repeatedly

e ”’> | oo |

training epochs Model converge Model converge

19



Challenge #3: Reducing Decision Deployment Time

* Inthe decision deployment phase: forwarding rule
tables with many entries need to be updated

- control plane con trol plane

= | —

3 calculatlong%mﬁ L rule
table

« Take ~1 second for a rule table with 80k entries,
accounting for 60% of the total control loop latency

(—]

" data plane data plane

T . _ _ —
1000 = input collection computation |deC|5|on deploymen

t

800 741.69ms

600 |
400
200

571.32ms

292.89ms
144.13ms

Time (millisecond)
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Number of updated entries

1.00 YrmmiGmm Qe R G e e
 Naive solution: reduce the number of entries in the

—,? ezza ;ﬂ - # ’-_14\5- — F;} }—;Rfﬂ.-;‘ ..'c"’-’a-(

[
s
table *ﬁ 0.75
» sacrifice the TE performance E _—
= - 3= CSPF =~ KSP+MCF o« Optimal
— wt= ECMP == MCF = R-MCF
0.2/ = FFC* - >~ Obliv. wighee SMORE

1 1

1 1
o o 2 4 8§ 16 32 64 128 256 512
[3] Semi-oblivious traffic engineering: the road not taken, NSDI 2018 Path split quantum[3]

1 1 1 1 1
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Design #3: Deployment-aware Reward Function

Insights:

» Many equivalent update policies, each of
which brings different time cost

» We can avoid unnecessary path adjustments
without sacrificing the performance

Remove unnecessary TE adjustment by carefully
engineering a Deployment-aware Reward Function

N

Fi=—|{Umax[—@* mMax A E,f ,J

\jl

1 1

TE performance: Number of
Max. Link Util. updated entries

E

2OGbpsi Jl4OGbps

Rule table

Update policy #1.

dst. node |index| path Modifying 50% entries
L [AB2D | 5 30% MLU
3 A->B->D - 3 A->C->D
4 A->B->D 4 A->C->D
1 A->C->E
9] A_SC, ~SE
3 A->C->E - 3 | A->B->D->E
4 A->C->E 4 | A->B->D->E
Rule table . )
dst. node |index| path Upd_ate_ policy #2: _
1 | A>B>D | Modifying 12.5% entries
2 [A>B>D | > 30% MLU
3 | A->B->D
4 | A>B>D ||m»[ 4 [ A>C>D |
1 A->C->E
2 A->C->E
3 A->C->E
4 A->C->E

21



Implementation and Deployment

The implementation of RedTE system

> Centralized controller for data collection
and model training

» Implementing RedTE Router on Barefoot

Tofino platform

RedTE controller
RL agents

. trained models

ow[%ﬁ%%

local state

RedTE router

inference module

table update module

updated entry
calculation

rule table update (write)

measurement module

simulation env. |4
f‘f—i'f\

offline training

— control flow of reading
data from dataplane

+— control flow of writing

entries into dataplane

history data
(traffic demand)

packets

| stream parser |

P4 runtime
local state (read) .'_‘_I

control pl. ‘"’e/PEle/

data plane

ASIC driver (kernel space)

data collection
module

TD and link
utilization registers

forwarding engine
module

Deployment in a real WAN, consisting of 6 city
nodes and spans 6 datacenters

» The furthest distance between 2 nodes >
600KM

22



Evaluation

Metric
» TE performance

v MLU (maximal link utilization)
v' MQL (maximal queue length)
» Number of update entries
» Control loop latency

Topology

» Our WAN testbed

» 4 real WAN topologies in simulation (ns-3)
Packet trace

» Open-sourced packet traces from WIDE

Baseline

» Global LP-based TE, TeXCP[SIGCOMM’05],
POP[SOSP’21], DOTE[NSDI'23], TEAL[SIGCOMM’23]

Our WAN testbed

Topologies in simulation

Topo. | Scale (# router, # link)
Viatel 88, 184

Colt 153, 354
AMIW 291, 2248

KDL 754, 1790

23



Practical TE Performance in our WAN testbed

RedTE reduces Mup to 30.3% of average normalized MLU compared to other TE methods,

@ up to 54. 7% of maximal queue length compared to other TE methods
m POP mDOTE mTEAL B RedTE

_ 1.5
D14

1.3
= 1.2
1.1

L

28.6%

19.49

} 30.3%

cooo
oO~N0O O -

Normalized

Wide packet trace replay All to all iPerf All to all video streams

700

o O
o O

52.5%

Better TE performance
|

o
o

0
51 20/ ol. (%

R N W A 01 O
o o
o o

o
o

<

Maximal queue length (cell)

o

Wide packet trace replay All to all iPerf All to all video streams
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TE Performance in Simulation

RedTE reduces up to 42.2% of average normalized MLU compared to other methods

mglobal LP = TeXCP = POP mDOTE mTEAL mRedTE

1.6
S5 15
1
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o
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o c 1
LL] o
— Q) 0.9
. ©
@ 0.8
= >
2 < ,< 0.7
m .
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AMIW Viatel Colt KDL
Topology name 25



TE Performance in Simulation

RedTE reduces up to /5.9% of maximal queue length compared to other TE methods

mglobal LP TeXCP POP ®mDOTE ®TEAL ®RedTE
330
@ =
8 E 25
C o @)} —
= 5 2
= o N
o g * } } 73.49 o
H © 10 B } h
5 S \ 75.3% 20,40
© F B
D/ = o _ _

AMIW Viatel Colt
Topology name



Microbenchmark (Design #1)

By using the MADDPG algorithm in model training
« RedTE reduces the average normalized MLU by up to 14.1%

m RedTE ®m RedTE without MADDPG
1.3
® -
|
% . = 1.25
& i®, _
5 .GE) 1.2
= T
S S 11 14.1%_
Ll o
— c
E % 1.1
@ © -
m< Y% 0105
I 4cC 6.5%<|:
1

AMIW Viatel Colt KDL
Topology name



Microbenchmark (Design #2)
By employing circular traffic replay
« RedTE reduces the convergence time of model training by up to 61.2%
* RedTE reduces the average normalized MLU by up to 8.3%

mRedTE ®m RedTE without Circular Replay

© - 1.16 B _
(&) 1 -
S =14
S D 112 ;

N =
o S 1 B3% 7.0% 8.1% 8.3%
= || E
" = 1.08

c
_ 1.06
8 >
T © 1.04
@ \Vg j% 1.02

[

AMIW Viatel Colt KDL
Topology name




Microbenchmark (Design #3)

By using the new reward function that includes a penalty term
 RedTE reduces the number of updated entries by up to 87.2%

B RedTE mPOP mDOTE

(o))
o

40

30

20

10

Number of updated entries (k)

o

AMIW Viatel Colt KDL
Topology name



Control Loop Latency

 RedTE achieves <100ms control loop latency in both our WAN testbed and large-
scale simulations

* RedTE speeds up the control loop by 2.7X - 341.1X, compared with other TE

systems

Data collection time / Computation time / Rule table updating time
topology Colt AMIW KDL
(#nodes, #edge) (153, 354) (291, 2248) (754, 1790)
global LP — /2120.75/ 120.70  — / 4803.46 / 200.17 — /32022.00 / 519.30
POP — /68.98 / 113.00 — / 228.00 / 193.05 — / 1427.03 / 452.10
DOTE — 1 50.50 ¢/ 105.85 — /150.15/ 198.10 — / 563.40 / 504.30
TEAL — [/ 24.95 / 123.27 — [/ 69.42 / 223.56 — / 476.73 / 563.38
RedTE 3.45/5.26 / 29.60 5.19/7.69/47.10 11.09/ 12.57 / 71.90
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Conclusion
1 Key Finding:
TE can mitigate bursts Iif its control

loop latency can be smaller than the
burst time-scale

3 Core Designs:

Enabling Cooperation by Introducing
MADDPG

Training with Circular TM Replay

Deployment-aware Reward Function

Real Deployments and Experiments:

Improving 30% TE performance

< 100ms Control Loop Latency

offline training in RedTE controller

simulation env.

>

RL agents

]

RedTE Architecture

local state
local traffic local link i local link
demand vector |*| utilization bandwidth

trained
models

historical
data

X

“="regular router

physical network

split table

dst. node|

split ratio

path 1

40%

edge

path 2

40%

router 1

path 3

20%

edge

router 2

~1-|'ule table update

dst. node

edge router 1

rule table
index path identifier
1 path 1
2 path 1
3 path 2
4 path 2
5 path 3

edge router 2
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