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Traffic Burstiness Hurts User Experience
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Internet traffic is bursty, causing:

[1] Cisco. Best Practices in Core Network, Capacity Planning 

White Paper. 2020.

Hurting user experience of latency-sensitive apps

To mitigate the impact of bursts,

• Over-provision: ISPs upgrade bandwidth 

when link utilization > 50%[1]

reserved bandwidth

upgrade threshold = 50%

0%

100%

latency jitter

1. queue buildup 2. packet loss

VR Online Gaming

➢ coarse-grained 

➢ not cost-effective



Nature of Traffic Bursts
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Traditional Approaches to Mitigating Traffic Bursts

Unfriendly to 

ISP deployment

host 

host 
router 
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router 

router 

router 

Mechanisms in end-hosts

• Application layer:   

• Transport layer:                      , DCTCP

local 

optimum

global 

optimum

Stuck at local 

optimum

Device-local traffic managers in network

• E.g. Dynamic load balance of Cisco

• Distribute traffic among multiple paths

Stuck at local 

optimum

1. Global perspective

2. ISP-friendly

global 

optimum

local 

optimum



Traffic engineering (TE) for burst mitigation?

Seattle New York

MiamiLos Angeles

TE system
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• Traffic Engineering (TE) has potential 

➢ Global perspective

➢ ISP friendly

• But TE is ignored previously

➢ Because of its slow decision-making speed

➢ Compared to the duration of bursts, the control 

loop of TE operates on a larger time-scale



Centralized 

Controller

The Control Loop of Typical TE

b. global traffic demand matrix

a. network topology

⋯ 2.0 TB
⋮ ⋱ ⋮

1.5 TB ⋯Miami

Seattle

MiamiSeattle

seconds-long

6

1. Data collection



traffic split on predefined paths

Seattle
New York

MiamiLos Angeles

Rule table in data plane

dst. node index path identifier

edge router 
1

1 path 1

2 path 1

3 path 2

edge router 
2

… …

seconds-long

The Control Loop of Typical TE

seconds/minutes-long

Centralized 

Controller

(objective: minimizing the max. link util.) 

7

seconds-long

b. global traffic demand matrix

a. network topology

⋯ 2.0 TB
⋮ ⋱ ⋮

1.5 TB ⋯Miami

Seattle

MiamiSeattle

1. Data collection 2. Computation

3. Decision deployment



Control Loop Latency of TE Matters: Experiment Setting
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• Method:

➢ Linear-Programming-based TE

➢ Simulating different Control Loop Latency

• Traffic traces:

➢ 2𝑘 15-minute packet trace segments from 

WIDE backbone network

➢ The packet traces have 50ms-level bursts

• Topologies:

➢ A WAN topo. from a major ISP (291 routers)

➢ KDL (791 routers) from Internet Zoo L
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Time
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LP decisions
Data 

collection 

Offline LP 

computation



Control Loop Latency of TE Matters: Experimental Results
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If we reduce control loop latency, we can reduce up to 47.8% of MLU 

• The queuing length is reduced by 77.2%

• The queuing delay is reduced by 75.9%
• The number of events where MLU exceeds the capacity 

upgrade threshold (50%) is reduced by 38.3%

• Method:

➢ Linear-Programming-based TE

➢ Simulating different Control Loop Latency

• Traffic traces:

➢ 2𝑘 15-minute packet trace segments from 

WIDE backbone network

➢ The packet traces have 50ms-level bursts

• Topologies:

➢ A WAN topo. from a major ISP (291 routers)

➢ KDL (791 routers) from Internet Zoo



Shorter Control Loop Latency Brings Better Performance
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The control loop latency must be close 

to the time scale of traffic bursts, or 

even smaller, in order to effectively 

alleviate burst-induced congestion!!!

Question: How to reduce the control loop latency to the burst time-scale?



Current TE Systems Still Have High Control Loop Latency  

• Distributed TE

➢ TeXCP[SIGCOMM’ 05], Halo[TON’ 14], MATE[INFOCOM’ 01]

➢ Local input collection and local decision deployment

➢ Progressively refine based on local feedback

• Centralized LP-based TE

➢ POP[SOSP’21] and NCFlow[NSDI’21]

➢ Accelerate the LP computation by sub-problem

decomposition and parallelly solving

• Centralized ML-based TE 

➢ DOTE[NSDI’23],TEAL[SIGCOMM’23]

➢ Use deep learning to speed up the computation
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Only focus on accelerating the computation, still spend long time in data collection and decision deployment

Slow multi-step convergence: at least seconds



Goals:

Reducing the control loop latency to the burst-scale 

while maintaining performance comparable 

to that of centralized TE systems
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Our Idea

Answer: RedTE

① Distributed TE, decision-making based on local 

info., and local decision deployment
the past 

decisions  

locally measured 

traffic statistics

decision 

context

Learn from past experience 

② Multi-agent Reinforcement Learning (MARL), 

a router can learn from past experience, attempting 

to make the global-informed decisions with locally 

information (avoid a slow multi-step convergence)



RedTE Architecture
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RL agentssimulation env.

trained models historical data 

offline 
training

RedTE router

regular router

Segment 

Routing



RedTE Workflow
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30% 2. inference

40%

30%

rule table in dataplane
dst. node index path identifier

edge router 1

1 path 1
2 path 1
3 path 2
4 path 2
5 path 3

edge router 2 … …

3.local decision deployment

RedTE router

regular router

1. local data collection
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RedTE Workflow
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RedTE controller 

RL agentssimulation env.

trained models historical data 

offline 
training

30%

40%

30%

rule table in dataplane
dst. node index path identifier

edge router 1

1 path 1
2 path 1
3 path 2
4 path 2
5 path 3

edge router 2 … …

local decision deployment

RedTE router

regular router

local input collection

1,1
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…

traffic demand vector

local link utilization 
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t
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Challenges

• Ensuring Collaboration Among All Agents Towards Global Optimum

• Ensuring Fast Convergence of Agent Training

• Reducing Decision Deployment Time



Challenge #1: Ensuring Collaboration Among All Agents Towards 

Global Optimum

• We model distributed TE system as a cooperative multi-agent system (CMAS)

agent 2

agent 1
?

Contributions to 

the global objective?

But, since each router only has local information, how can they cooperate towards the global 

optimum instead of each making greedy decisions

16

Global Optimal 

Performance



Design #1: Enabling Cooperation by Introducing MADDPG
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• Borrowing the idea from Cooperative Game Field, 

and applying the MADDPG (Multi-agent deep 

deterministic policy gradient)[2] to train RL models

Global critic

agent 1 agent N

network env.

other state 

info.
state action state action

action

state action

state

Q value
Q value

MADDPG aggregates the policies of 

all agents into a global critic model, 

and figures out each agent’s 

contribution to the global reward. 

[2] Ryan Lowe, Jean Harb, Aviv Tamar, Pieter Abbeel, and Igor Mordatch. 2018. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In 31st Conference on 

Neural Information Processing Systems (NIPS).

Through separate and precise 

feedback, agents learn to cooperate!



Challenge #2: Ensuring Fast Convergence of Agent Training
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• Traffic-driven environment: state transition process is also affected by the arrival process of network 

traffic

• Problem: Randomness of network traffic → good action may receive a small reward due to a new 

TM sequence with a high load arrived, training takes a long time to converge

agent network env.

observe state 𝑠𝑡

take action 𝑎𝑡

reward 𝑟𝑡

Time (ms)
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Random!
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• Fix a TM subsequence and replay it multiple times repeatedly, till convergence

Design #2: Training with Circular Traffic Matrix (TM) Replay

1-th TM subsequence

replayed K times repeatedly

2-th TM subsequence

replayed K times repeatedly
S-th TM subsequence

replayed K times repeatedly

… …

…

an integrated TM sequence

only replayed the 1-th time
replayed the 2-th time replayed the T-th time

Traditional replay

Circular replay

• Then switches to the next TM subsequence and conduct the same procedure again and again

It takes a long time (~1 day) for the model to converge!

Short-term memory of the RL model Learning the TM evolution patterns 



Challenge #3: Reducing Decision Deployment Time
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• In the decision deployment phase: forwarding rule 

tables with many entries need to be updated

• Take ~1 second for a rule table with 80k entries,

accounting for 60% of the total control loop latency

L
in

k
 u

ti
liz

a
ti
o
n• Naïve solution: reduce the number of entries in the 

table

➢ sacrifice the TE performance

[3] Semi-oblivious traffic engineering: the road not taken, NSDI 2018 [3]



Design #3: Deployment-aware Reward Function

• Insights: 

➢ Many equivalent update policies, each of 

which brings different time cost

➢ We can avoid unnecessary path adjustments 

without sacrificing the performance

Number of 

updated entries 

TE performance: 

Max. Link Util.

• Remove unnecessary TE adjustment by carefully 

engineering a Deployment-aware Reward Function
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A B

C D

20Gbps 40Gbps

Rule table
dst. node index path

D

1 A->B->D
2 A->B->D
3 A->B->D
4 A->B->D
… …

E

1 A->C->E
2 A->C->E
3 A->C->E
4 A->C->E

E

3 A->C->D
4 A->C->D

3 A->B->D->E
4 A->B->D->E

Update policy #1:

Modifying 50% entries 

→ 30% MLU

Rule table
dst. node index path

D

1 A->B->D
2 A->B->D
3 A->B->D
4 A->B->D
… …

E

1 A->C->E
2 A->C->E
3 A->C->E
4 A->C->E

4 A->C->D

Update policy #2:

Modifying 12.5% entries 

→ 30% MLU



Implementation and Deployment

• The implementation of RedTE system 

➢ Centralized controller for data collection 

and model training

➢ Implementing RedTE Router on Barefoot 

Tofino platform

• Deployment in a real WAN, consisting of 6 city 

nodes and spans 6 datacenters

➢ The furthest distance between 2 nodes >  

600KM
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Evaluation
• Metric

➢ TE performance

✓ MLU (maximal link utilization)

✓ MQL (maximal queue length)

➢ Number of update entries

➢ Control loop latency

• Topology

➢ Our WAN testbed

➢ 4 real WAN topologies in simulation (ns-3)

• Packet trace

➢ Open-sourced packet traces from WIDE

• Baseline

➢ Global LP-based TE,  TeXCP[SIGCOMM’05], 

POP[SOSP’21], DOTE[NSDI’23], TEAL[SIGCOMM’23]
23

Topo. Scale (# router, # link)

Viatel 88, 184

Colt 153, 354

AMIW 291, 2248

KDL 754, 1790

Our WAN testbed

Topologies in simulation



Practical TE Performance in our WAN testbed
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RedTE reduces ①up to 30.3% of  average normalized MLU compared to other TE methods, 

② up to 54.7% of maximal queue length compared to other TE methods
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RedTE reduces up to 42.2% of  average normalized MLU compared to other methods

TE Performance in Simulation
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RedTE reduces up to 75.9% of maximal queue length compared to other TE methods

TE Performance in Simulation
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Microbenchmark (Design #1)
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By using the MADDPG algorithm in model training

• RedTE reduces the average normalized MLU by up to 14.1%
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Microbenchmark (Design #2)
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By employing circular traffic replay

• RedTE reduces the convergence time of model training by up to 61.2%

• RedTE reduces the average normalized MLU by up to 8.3%
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Microbenchmark (Design #3)
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By using the new reward function that includes a penalty term

• RedTE reduces the number of updated entries by up to 87.2%

87.2%

76.5%66.7%

78.8%



Control Loop Latency
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59.8%-64.9%.

• RedTE speeds up the control loop by 2.7X - 341.1X, compared with other TE 

systems

Data collection time / Computation time / Rule table updating time

• RedTE achieves <100ms control loop latency in both our WAN testbed and large-

scale simulations
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Conclusion
1 Key Finding:

RedTE Architecture

3 Core Designs:

Real Deployments and Experiments:

TE can mitigate bursts if its control 

loop latency can be smaller than the 

burst time-scale

Enabling Cooperation by Introducing 

MADDPG

Training with Circular TM Replay

Deployment-aware Reward Function

Improving 30% TE performance 

< 100ms Control Loop Latency
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Q&A


